Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genet Med ; 26(6): 101104, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38411040

RESUMEN

PURPOSE: The functionality of many cellular proteins depends on cofactors; yet, they have only been implicated in a minority of Mendelian diseases. Here, we describe the first 2 inherited disorders of the cytosolic iron-sulfur protein assembly system. METHODS: Genetic testing via genome sequencing was applied to identify the underlying disease cause in 3 patients with microcephaly, congenital brain malformations, progressive developmental and neurologic impairments, recurrent infections, and a fatal outcome. Studies in patient-derived skin fibroblasts and zebrafish models were performed to investigate the biochemical and cellular consequences. RESULTS: Metabolic analysis showed elevated uracil and thymine levels in body fluids but no pathogenic variants in DPYD, encoding dihydropyrimidine dehydrogenase. Genome sequencing identified compound heterozygosity in 2 patients for missense variants in CIAO1, encoding cytosolic iron-sulfur assembly component 1, and homozygosity for an in-frame 3-nucleotide deletion in MMS19, encoding the MMS19 homolog, cytosolic iron-sulfur assembly component, in the third patient. Profound alterations in the proteome, metabolome, and lipidome were observed in patient-derived fibroblasts. We confirmed the detrimental effect of deficiencies in CIAO1 and MMS19 in zebrafish models. CONCLUSION: A general failure of cytosolic and nuclear iron-sulfur protein maturation caused pleiotropic effects. The critical function of the cytosolic iron-sulfur protein assembly machinery for antiviral host defense may well explain the recurrent severe infections occurring in our patients.

2.
J Proteome Res ; 23(2): 596-608, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38190553

RESUMEN

Reliable and comprehensive multi-omics analysis is essential for researchers to understand and explore complex biological systems more completely. Bacillus subtilis (B. subtilis) is a model organism for Gram-positive spore-forming bacteria, and in-depth insight into the physiology and molecular basis of spore formation and germination in this organism requires advanced multilayer molecular data sets generated from the same sample. In this study, we evaluated two monophasic methods for polar and nonpolar compound extraction (acetonitrile/methanol/water; isopropanol/water, and 60% ethanol) and two biphasic methods (chloroform/methanol/water, and methyl tert-butyl ether/methanol/water) on coefficients of variation of analytes, identified metabolite composition, and the quality of proteomics profiles. The 60% EtOH protocol proved to be the easiest in sample processing and was more amenable to automation. Collectively, we annotated 505 and 484 metabolites and identified 1665 and 1562 proteins in B. subtilis vegetative cells and spores, respectively. We also show differences between vegetative cells and spores from a multi-omics perspective and demonstrate that an integrative multi-omics analysis can be implemented from one sample using the 60% EtOH protocol. The results obtained by the 60% EtOH protocol provide comprehensive insight into differences in the metabolic and protein makeup of B. subtilis vegetative cells and spores.


Asunto(s)
Bacillus subtilis , Proteómica , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , Metanol , Agua/metabolismo , Etanol/metabolismo
3.
Mol Plant Microbe Interact ; 37(2): 98-111, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38051229

RESUMEN

The phloem-feeding insect Bemisia tabaci is an important pest, responsible for the transmission of several crop-threatening virus species. While feeding, the insect secretes a cocktail of effectors to modulate plant defense responses. Here, we present a set of proteins identified in an artificial diet on which B. tabaci was salivating. We subsequently studied whether these candidate effectors can play a role in plant immune suppression. Effector G4 was the most robust suppressor of an induced- reactive oxygen species (ROS) response in Nicotiana benthamiana. In addition, G4 was able to suppress ROS production in Solanum lycopersicum (tomato) and Capsicum annuum (pepper). G4 localized predominantly in the endoplasmic reticulum in N. benthamiana leaves and colocalized with two identified target proteins in tomato: REF-like stress related protein 1 (RSP1) and meloidogyne-induced giant cell protein DB141 (MIPDB141). Silencing of MIPDB141 in tomato reduced whitefly fecundity up to 40%, demonstrating that the protein is involved in susceptibility to B. tabaci. Together, our data demonstrate that effector G4 impairs tomato immunity to whiteflies by interfering with ROS production and via an interaction with tomato susceptibility protein MIPDB141. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Capsicum , Hemípteros , Solanum lycopersicum , Animales , Hemípteros/fisiología , Especies Reactivas de Oxígeno
4.
Fungal Biol Biotechnol ; 10(1): 21, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957766

RESUMEN

BACKGROUND: Asexually developed fungal spores (conidia) are key for the massive proliferation and dispersal of filamentous fungi. Germination of conidia and subsequent formation of a mycelium network give rise to many societal problems related to human and animal fungal diseases, post-harvest food spoilage, loss of harvest caused by plant-pathogenic fungi and moulding of buildings. Conidia are highly stress resistant compared to the vegetative mycelium and therefore even more difficult to tackle. RESULTS: In this study, complementary approaches are used to show that accumulation of mannitol and trehalose as the main compatible solutes during spore maturation is a key factor for heat resistance of conidia. Compatible solute concentrations increase during conidia maturation, correlating with increased heat resistance of mature conidia. This maturation only occurs when conidia are attached to the conidiophore. Moreover, conidia of a mutant Aspergillus niger strain, constructed by deleting genes involved in mannitol and trehalose synthesis and consequently containing low concentrations of these compatible solutes, exhibit a sixteen orders of magnitude more sensitive heat shock phenotype compared to wild-type conidia. Cultivation at elevated temperature results in adaptation of conidia with increased heat resistance. Transcriptomic and proteomic analyses revealed two putative heat shock proteins to be upregulated under these conditions. However, conidia of knock-out strains lacking these putative heat shock proteins did not show a reduced heat resistance. CONCLUSIONS: Heat stress resistance of fungal conidia is mainly determined by the compatible solute composition established during conidia maturation. To prevent heat resistant fungal spore contaminants, food processing protocols should consider environmental conditions stimulating compatible solute accumulation and potentially use compatible solute biosynthesis as a novel food preservation target.

5.
Int J Mol Sci ; 23(21)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36362401

RESUMEN

Bacillus cereus is a spore-forming human pathogen that is a burden to the food chain. Dormant spores are highly resistant to harsh environmental conditions, but lose resistance after germination. In this study, we investigate the B. cereus spore proteome upon spore germination and outgrowth so as to obtain new insights into the molecular mechanisms involved. We used mass spectrometry combined with co-expression network analysis and obtained a unique global proteome view of the germination and outgrowth processes of B. cereus spores by monitoring 2211 protein changeovers. We are the first to examine germination and outgrowth models of B. cereus spores experimentally by studying the dynamics of germinant receptors, other proteins involved in spore germination and resistance, and coat and exosporium proteins. Furthermore, through the co-expression analysis of 1175 proteins identified with high quality data, germination proteome data were clustered into eight modules (termed black, blue, brown, green, red, turquoise, grey, and yellow), whose associated functions and expression profiles were investigated. Germination related proteins were clustered into blue and brown modules, the abundances of which decreased after finishing germination. In the brown and blue we identified 124 proteins that could be vital during germination. These proteins will be very interesting to study in future genetic studies regarding their function in spore revival in B. cereus.


Asunto(s)
Bacillus cereus , Esporas Bacterianas , Humanos , Bacillus cereus/genética , Esporas Bacterianas/fisiología , Proteómica , Proteoma/metabolismo , Proteínas Bacterianas/metabolismo
6.
Microorganisms ; 10(9)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36144297

RESUMEN

Fluorescent fusion proteins were expressed in Bacillus cereus to visualize the germinosome by introducing a plasmid that carries fluorescent fusion proteins of germinant receptor GerR subunits or germinosome scaffold protein GerD. The effects of plasmid insertion and recombinant protein expression on the spore proteome were investigated. Proteomic analysis showed that overexpression of the target proteins had negligible effects on the spore proteome. However, plasmid-bearing spores displayed dramatic abundance changes in spore proteins involved in signaling and metabolism. Our findings indicate that the introduction of a plasmid alone alters the spore protein composition dramatically, with 993 proteins significantly down-regulated and 415 proteins significantly up-regulated among 3323 identified proteins. This shows that empty vector controls are more appropriate to compare proteome changes due to plasmid-encoded genes than is the wild-type strain, when using plasmid-based genetic tools. Therefore, researchers should keep in mind that molecular cloning techniques can alter more than their intended targets in a biological system, and interpret results with this in mind.

7.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34830357

RESUMEN

Membrane proteins are fascinating since they play an important role in diverse cellular functions and constitute many drug targets. Membrane proteins are challenging to analyze. The spore, the most resistant form of known life, harbors a compressed inner membrane. This membrane acts not only as a barrier for undesired molecules but also as a scaffold for proteins involved in signal transduction and the transport of metabolites during spore germination and subsequent vegetative growth. In this study, we adapted a membrane enrichment method to study the membrane proteome of spores and cells of the food-borne pathogen Bacillus cereus using quantitative proteomics. Using bioinformatics filtering we identify and quantify 498 vegetative cell membrane proteins and 244 spore inner membrane proteins. Comparison of vegetative and spore membrane proteins showed there were 54 spore membrane-specific and 308 cell membrane-specific proteins. Functional characterization of these proteins showed that the cell membrane proteome has a far larger number of transporters, receptors and proteins related to cell division and motility. This was also reflected in the much higher expression level of many of these proteins in the cellular membrane for those proteins that were in common with the spore inner membrane. The spore inner membrane had specific expression of several germinant receptors and spore-specific proteins, but also seemed to show a preference towards the use of simple carbohydrates like glucose and fructose owing to only expressing transporters for these. These results show the differences in membrane proteome composition and show us the specific proteins necessary in the inner membrane of a dormant spore of this toxigenic spore-forming bacterium to survive adverse conditions.


Asunto(s)
Bacillus cereus/genética , Proteínas Bacterianas/genética , Enfermedades Transmitidas por los Alimentos/genética , Proteoma/genética , Bacillus cereus/patogenicidad , Proteínas Bacterianas/clasificación , Membrana Celular/genética , Contaminación de Alimentos , Microbiología de Alimentos , Enfermedades Transmitidas por los Alimentos/microbiología , Humanos , Proteínas de la Membrana/clasificación , Proteínas de la Membrana/genética , Proteómica , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/patogenicidad
8.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34502250

RESUMEN

Bacillus subtilis vegetative cells switch to sporulation upon nutrient limitation. To investigate the proteome dynamics during sporulation, high-resolution time-lapse proteomics was performed in a cell population that was induced to sporulate synchronously. Here, we are the first to comprehensively investigate the changeover of sporulation regulatory proteins, coat proteins, and other proteins involved in sporulation and spore biogenesis. Protein co-expression analysis revealed four co-expressed modules (termed blue, brown, green, and yellow). Modules brown and green are upregulated during sporulation and contain proteins associated with sporulation. Module blue is negatively correlated with modules brown and green, containing ribosomal and metabolic proteins. Finally, module yellow shows co-expression with the three other modules. Notably, several proteins not belonging to any of the known transcription regulons were identified as co-expressed with modules brown and green, and might also play roles during sporulation. Finally, levels of some coat proteins, for example morphogenetic coat proteins, decreased late in sporulation.


Asunto(s)
Bacillus subtilis/metabolismo , Bacillus subtilis/fisiología , Proteoma/análisis , Proteoma/metabolismo , Esporas Bacterianas/metabolismo , Esporas Bacterianas/fisiología , Bacillus subtilis/citología , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Esporas Bacterianas/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
9.
Biochim Biophys Acta Proteins Proteom ; 1869(7): 140655, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33812047

RESUMEN

Chemical cross-linking (CX) of proteins in vivo or in cell free extracts followed by mass spectrometric (MS) identification of linked peptide pairs (CXMS) can reveal protein-protein interactions (PPIs) both at a proteome wide scale and the level of cross-linked amino acid residues. However, error estimation at the level of PPI remains challenging in large scale datasets. Here we discuss recent advances in the recognition of spurious inter-protein peptide pairs and in diminishing the FDR for these PPI-signaling cross-links, such as the use of chromatographic retention time prediction, in order to come to a more reliable reporting of PPIs.


Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Proteínas/química , Reactivos de Enlaces Cruzados/química , Humanos , Espectrometría de Masas/métodos , Modelos Moleculares , Péptidos/química , Mapeo de Interacción de Proteínas/normas , Proteoma
10.
Nat Commun ; 12(1): 1183, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608518

RESUMEN

Ice-nucleation active (INA) bacteria can promote the growth of ice more effectively than any other known material. Using specialized ice-nucleating proteins (INPs), they obtain nutrients from plants by inducing frost damage and, when airborne in the atmosphere, they drive ice nucleation within clouds, which may affect global precipitation patterns. Despite their evident environmental importance, the molecular mechanisms behind INP-induced freezing have remained largely elusive. We investigate the structural basis for the interactions between water and the ice-nucleating protein InaZ from the INA bacterium Pseudomonas syringae. Using vibrational sum-frequency generation (SFG) and two-dimensional infrared spectroscopy, we demonstrate that the ice-active repeats of InaZ adopt a ß-helical structure in solution and at water surfaces. In this configuration, interaction between INPs and water molecules imposes structural ordering on the adjacent water network. The observed order of water increases as the interface is cooled to temperatures close to the melting point of water. Experimental SFG data combined with molecular-dynamics simulations and spectral calculations show that InaZ reorients at lower temperatures. This reorientation can enhance water interactions, and thereby the effectiveness of ice nucleation.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Frío , Agua/química , Atmósfera , Proteínas de la Membrana Bacteriana Externa/genética , Óxido de Deuterio , Congelación , Hielo , Simulación de Dinámica Molecular , Plantas/microbiología , Pseudomonas syringae/metabolismo
11.
J Proteomics ; 230: 103987, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-32949815

RESUMEN

In vivo chemical cross-linking combined with LCMSMS of digested extracts (in vivo CX-MS) can reveal stable and dynamic protein-protein interactions at proteome-wide scale and at peptide level. In vivo CX-MS requires a membrane permeable and cleavable cross-linker and a fast and sensitive search engine to identify the linked peptides. Here we explore the use of the search engine pLink 2 to identify cross-links induced in exponentially growing Bacillus subtilis cells treated in culture with bis(succinimidyl)-3-azidomethyl-glutarate (BAMG). Cross-linked peptide pairs were identified by pLink 2 in very short time at an overall FDR of <5%. To also obtain a FDR <5% for non-redundant inter-protein cross-linked peptide pairs additional threshold values were applied for matched fragment intensity and for the numbers of unambiguous y and b ions assigned to both composite peptides. Also the mass- and charge-dependent retention times of target peptides purified by diagonal strong cation exchange chromatography were used as a criterion to distinguish true from false positives. After application of the composite filter new protein-protein interactions were revealed among others between the global transcriptional repressor AbrB and elongation factor Tu and between the essential protein YlaN of unknown function and the ferric uptake repressor Fur. SIGNIFICANCE: Important for reliable identification of PPIs by chemical cross-linking in vivo is a low FDR of non-redundant inter-protein peptide pairs. Here we describe how to recognize the presence of spurious interactions in a dataset of cross-linked peptide pairs enriched by 2D strong cation exchange chromatography and identified by LCMSMS by taking into account chromatographic behavior of cross-linked peptide pairs and protein abundance of corresponding peptides. Based on these criteria we assessed that the FDR of the fraction of non-redundant inter-protein cross-linked peptide pairs was approx. 20-25% by interrogating an entire species specific database at an overall FDR of 5% or 0.1% with a search engine that otherwise scores best in sensitivity among other search engines. We have defined a composite filter to decrease this high FDR of inter-protein cross-linked peptide pairs to only about 2%.


Asunto(s)
Péptidos , Proteoma , Bacillus subtilis , Reactivos de Enlaces Cruzados , Motor de Búsqueda
12.
Int J Mol Sci ; 19(10)2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30261644

RESUMEN

Cell division in bacteria is initiated by the polymerization of FtsZ at midcell in a ring-like structure called the Z-ring. ZapA and other proteins assist Z-ring formation and ZapA binds ZapB, which senses the presence of the nucleoids. The FtsZ⁻ZapA binding interface was analyzed by chemical cross-linking mass spectrometry (CXMS) under in vitro FtsZ-polymerizing conditions in the presence of GTP. Amino acids residue K42 from ZapA was cross-linked to amino acid residues K51 and K66 from FtsZ, close to the interphase between FtsZ molecules in protofilaments. Five different cross-links confirmed the tetrameric structure of ZapA. A number of FtsZ cross-links suggests that its C-terminal domain of 55 residues, thought to be largely disordered, has a limited freedom to move in space. Site-directed mutagenesis of ZapA reveals an interaction site in the globular head of the protein close to K42. Using the information on the cross-links and the mutants that lost the ability to interact with FtsZ, a model of the FtsZ protofilament⁻ZapA tetramer complex was obtained by information-driven docking with the HADDOCK2.2 webserver.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Proteínas del Citoesqueleto/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , División Celular/genética , Reactivos de Enlaces Cruzados/química , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Lisina/química , Lisina/genética , Lisina/metabolismo , Espectrometría de Masas/métodos , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida/métodos , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Programas Informáticos
13.
Proteomics Clin Appl ; 12(5): e1700169, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29484825

RESUMEN

PURPOSE: Bacterial endospores, the transmissible forms of pathogenic bacilli and clostridia, are heterogeneous multilayered structures composed of proteins. These proteins protect the spores against a variety of stresses, thus helping spore survival, and assist in germination, by interacting with the environment to form vegetative cells. Owing to the complexity, insolubility, and dynamic nature of spore proteins, it has been difficult to obtain their comprehensive protein profiles. EXPERIMENTAL DESIGN: The intact spores of Bacillus subtilis, Bacillus cereus, and Peptoclostridium difficile and their vegetative counterparts were disrupted by bead beating in 6 m urea under reductive conditions. The heterogeneous mixture was then double digested with LysC and trypsin. Next, the peptide mixture was pre-fractionated with zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) followed by reverse-phase LC-FT-MS analysis of the fractions. RESULTS: "One-pot" method is a simple, robust method that yields identification of >1000 proteins with high confidence, across all spore layers from B. subtilis, B. cereus, and P. difficile. CONCLUSIONS AND MEDICAL RELEVANCE: This method can be employed for proteome-wide analysis of non-spore-forming as well as spore-forming pathogens. Analysis of spore protein profile will help to understand the sporulation and germination processes and to distinguish immunogenic protein markers.


Asunto(s)
Bacillus subtilis/genética , Proteoma/genética , Proteómica , Esporas Bacterianas/genética , Bacillus subtilis/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cromatografía Liquida , Esporas Bacterianas/química , Espectrometría de Masas en Tándem
14.
J Proteome Res ; 16(7): 2457-2471, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28516784

RESUMEN

Identification of dynamic protein-protein interactions at the peptide level on a proteomic scale is a challenging approach that is still in its infancy. We have developed a system to cross-link cells directly in culture with the special lysine cross-linker bis(succinimidyl)-3-azidomethyl-glutarate (BAMG). We used the Gram-positive model bacterium Bacillus subtilis as an exemplar system. Within 5 min extensive intracellular cross-linking was detected, while intracellular cross-linking in a Gram-negative species, Escherichia coli, was still undetectable after 30 min, in agreement with the low permeability in this organism for lipophilic compounds like BAMG. We were able to identify 82 unique interprotein cross-linked peptides with <1% false discovery rate by mass spectrometry and genome-wide database searching. Nearly 60% of the interprotein cross-links occur in assemblies involved in transcription and translation. Several of these interactions are new, and we identified a binding site between the δ and ß' subunit of RNA polymerase close to the downstream DNA channel, providing a clue into how δ might regulate promoter selectivity and promote RNA polymerase recycling. Our methodology opens new avenues to investigate the functional dynamic organization of complex protein assemblies involved in bacterial growth. Data are available via ProteomeXchange with identifier PXD006287.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Glutaratos/química , Mapeo de Interacción de Proteínas/métodos , Succinimidas/química , Secuencia de Aminoácidos , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Reactivos de Enlaces Cruzados/química , Medios de Cultivo/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Glutamato Deshidrogenasa/química , Glutamato Deshidrogenasa/genética , Glutamato Deshidrogenasa/metabolismo , Biogénesis de Organelos , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Especificidad de la Especie , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
15.
J Proteome Res ; 15(2): 585-94, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26731423

RESUMEN

The endospore is the dormant form of Bacillus subtilis and many other Firmicutes. By sporulation, these spore formers can survive very harsh physical and chemical conditions. Yet, they need to go through germination to return to their growing form. The spore inner membrane (IM) has been shown to play an essential role in triggering the initiation of germination. In this study, we isolated the IM of bacterial spores, in parallel with the isolation of the membrane of vegetative cells. With the use of GeLC-MS/MS, over 900 proteins were identified from the B. subtilis spore IM preparations. By bioinformatics-based membrane protein predictions, ca. one-third could be predicted to be membrane-localized. A large number of unique proteins as well as proteins common to the two membrane proteomes were identified. In addition to previously known IM proteins, a number of IM proteins were newly identified, at least some of which are likely to provide new insights into IM physiology, unveiling proteins putatively involved in spore germination machinery and hence putative germination inhibition targets.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Esporas Bacterianas/metabolismo , Proteínas Bacterianas/clasificación , Cromatografía Liquida , Electroforesis en Gel de Poliacrilamida , Proteínas de la Membrana/clasificación , Microscopía Electrónica de Transmisión , Proteoma/clasificación , Esporas Bacterianas/ultraestructura , Espectrometría de Masas en Tándem
16.
Rapid Commun Mass Spectrom ; 30(14): 1695-1704, 2016 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-28328035

RESUMEN

RATIONALE: Since the last decade, mass spectrometry (MS) has become an essential technique for phosphoprotein analysis. Formidable analytical challenges of MS for phosphoprotein study are both the low abundance of phosphopeptides and the lack of an unambiguous diagnostic fragment ion for identification of phospho residues. These challenges can be met by a charge-based isolation of ß-elimination products after tryptic digestion using diagonal strong cation-exchange chromatography. METHODS: ß-Elimination combined with diagonal strong cation-exchange chromatography (BE/2SCX) was used for the enrichment of phosphorylated peptides prior to a mass spectrometric analysis by liquid chromatography/ion trap tandem mass spectrometry (MS/MS). Bovine α-casein (≥70% purity) was used as a model protein. RESULTS: Conditions for ß-elimination were optimized to maximize the efficiency of the reaction. With a ß-elimination, all four model phosphopeptides from enolase (yeast) were correctly identified. The application of the BE/2SCX enrichment strategy for the analysis of ß-elimination products of α-casein (bovine) allowed the identification of 11 phosphorylated products. CONCLUSIONS: The introduction of a BE/2SCX-based enrichment step prior to LC/MS/MS analysis of ß-elimination products facilitates the identification of phosphopeptides. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Fosfopéptidos/química , Espectrometría de Masas en Tándem , Animales , Caseínas , Cationes , Bovinos , Cromatografía Liquida
17.
Biotechnol Biofuels ; 8: 111, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26246854

RESUMEN

BACKGROUND: This study aimed at exploring the molecular physiological consequences of a major redirection of carbon flow in so-called cyanobacterial cell factories: quantitative whole-cell proteomics analyses were carried out on two (14)N-labelled Synechocystis mutant strains, relative to their (15)N-labelled wild-type counterpart. Each mutant strain overproduced one specific commodity product, i.e. ethanol or lactic acid, to such an extent that the majority of the incoming CO2 in the organism was directly converted into the product. RESULTS: In total, 267 proteins have been identified with a significantly up- or down-regulated expression level. In the ethanol-producing mutant, which had the highest relative direct flux of carbon-to-product (>65%), significant up-regulation of several components involved in the initial stages of CO2 fixation for cellular metabolism was detected. Also a general decrease in abundance of the protein synthesizing machinery of the cells and a specific induction of an oxidative stress response were observed in this mutant. In the lactic acid overproducing mutant, that expresses part of the heterologous l-lactate dehydrogenase from a self-replicating plasmid, specific activation of two CRISPR associated proteins, encoded on the endogenous pSYSA plasmid, was observed. RT-qPCR was used to measure, of nine of the genes identified in the proteomics studies, also the adjustment of the corresponding mRNA level. CONCLUSION: The most striking adjustments detected in the proteome of the engineered cells were dependent on the specific product formed, with, e.g. more stress caused by lactic acid- than by ethanol production. Up-regulation of the total capacity for CO2 fixation in the ethanol-producing strain was due to hierarchical- rather than metabolic regulation. Furthermore, plasmid-based expression of heterologous gene(s) may induce genetic instability. For selected, limited, number of genes a striking correlation between the respective mRNA- and the corresponding protein expression level was observed, suggesting that for the expression of these genes regulation takes place primarily at the level of gene transcription.

18.
J Biol Chem ; 290(35): 21498-509, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26160297

RESUMEN

Cell division in Escherichia coli involves a set of essential proteins that assembles at midcell to form the so-called divisome. The divisome regulates the invagination of the inner membrane, cell wall synthesis, and inward growth of the outer membrane. One of the divisome proteins, FtsQ, plays a central but enigmatic role in cell division. This protein associates with FtsB and FtsL, which, like FtsQ, are bitopic inner membrane proteins with a large periplasmic domain (denoted FtsQp, FtsBp, and FtsLp) that is indispensable for the function of each protein. Considering the vital nature and accessible location of the FtsQBL complex, it is an attractive target for protein-protein interaction inhibitors intended to block bacterial cell division. In this study, we expressed FtsQp, FtsBp, and FtsLp individually and in combination. Upon co-expression, FtsQp was co-purified with FtsBp and FtsLp from E. coli extracts as a stable trimeric complex. FtsBp was also shown to interact with FtsQp in the absence of FtsLp albeit with lower affinity. Interactions were mapped at the C terminus of the respective domains by site-specific cross-linking. The binding affinity and 1:1:1 stoichiometry of the FtsQpBpLp complex and the FtsQpBp subcomplex were determined in complementary surface plasmon resonance, analytical ultracentrifugation, and native mass spectrometry experiments.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citología , Escherichia coli/metabolismo , Complejos Multiproteicos/metabolismo , Secuencia de Aminoácidos , Técnicas Biosensibles , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , División Celular , Reactivos de Enlaces Cruzados/metabolismo , Proteínas Inmovilizadas/metabolismo , Luz , Espectrometría de Masas , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Péptidos/química , Péptidos/metabolismo , Periplasma/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Solubilidad , Relación Estructura-Actividad , Ultracentrifugación
19.
Biochim Biophys Acta ; 1854(10 Pt A): 1269-79, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26049081

RESUMEN

Time-series transcript- and protein-profiles were measured upon initiation of carbon catabolite repression in Escherichia coli, in order to investigate the extent of post-transcriptional control in this prototypical response. A glucose-limited chemostat culture was used as the CCR-free reference condition. Stopping the pump and simultaneously adding a pulse of glucose, that saturated the cells for at least 1h, was used to initiate the glucose response. Samples were collected and subjected to quantitative time-series analysis of both the transcriptome (using microarray analysis) and the proteome (through a combination of 15N-metabolic labeling and mass spectrometry). Changes in the transcriptome and corresponding proteome were analyzed using statistical procedures designed specifically for time-series data. By comparison of the two sets of data, a total of 96 genes were identified that are post-transcriptionally regulated. This gene list provides candidates for future in-depth investigation of the molecular mechanisms involved in post-transcriptional regulation during carbon catabolite repression in E. coli, like the involvement of small RNAs.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Glucosa/deficiencia , Proteoma , Transcriptoma , Reactores Biológicos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Marcaje Isotópico , Análisis por Micromatrices , Anotación de Secuencia Molecular , Isótopos de Nitrógeno , Factores de Tiempo
20.
J Chromatogr A ; 1348: 34-46, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24819016

RESUMEN

Knowledge of spatial proximity of amino acid residues obtained by chemical cross-linking and mass spectrometric analysis provides information about protein folding, protein-protein interactions and topology of macromolecular assemblies. We show that the use of bis(succinimidyl)-3-azidomethyl glutarate as a cross-linker provides a solution for two major analytical problems of cross-link mapping by peptide fragment fingerprinting (PFF) from complex sequence databases, i.e., low abundance of protease-generated target peptides and lack of knowledge of the masses of linked peptides. Tris(carboxyethyl)phosphine (TCEP) reduces the azido group in cross-linked peptides to an amine group in competition with cleavage of an amide bond formed in the cross-link reaction. TCEP-induced reaction products were separated by diagonal strong cation exchange (SCX) from unmodified peptides. The relation between the sum of the masses of the cleavage products and the mass of the parent cross-linked peptide enables determination of the masses of candidate linked peptides. By reversed phase LC-MS/MS analysis of secondary SCX fractions, we identified several intraprotein and interprotein cross-links in a HeLa cell nuclear extract, aided by software tools supporting PFF from the entire human sequence database. The data provide new information about interacting protein domains, among others from assemblies involved in splicing.


Asunto(s)
Cromatografía Liquida , Bases de Datos de Proteínas , Mapeo Peptídico , Péptidos/aislamiento & purificación , Reactivos de Enlaces Cruzados , Células HeLa , Humanos , Péptidos/química , Estructura Terciaria de Proteína , Sales (Química)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...